
Elementary Analysis 2060B 15/16 -Summary

1 differentiability

Definition 1.1. Given f : [a, b] → R. We say that f is differentiable at c ∈ (a, b) if there

exists L ∈ R such that for all ε > 0, there exists δ > 0 such that for all x ∈ (c− δ, c+ δ)\{c}∣∣∣∣f(x)− f(c)

x− c
− L

∣∣∣∣ < ε.

And we denote f ′(c) = L.

Corollary 1.2. If f is differentiable at c, then f is continuous at c.

1.1 Properties of f ′(x)

Theorem 1.3. (Darbouxs Theorem, intermediate value property) If f is differentiable on

[a, b] and if k ∈ (f ′(a), f ′(b)), then there exist c ∈ (a, b) such that f ′(c) = k.

Theorem 1.4. (Mean value theorem) If f is differentiable on (a, b) and continuous on [a, b],

then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Here are some generalisations of mean value theorem.

Theorem 1.5. (Cauchy Mean Value Theorem) Let f and g be continuous on [a, b] and

differentiable on (a, b), and assume that g 6= 0 for all x in (a, b). Then there exists c ∈ (a, b)

such that
f ′(c)

g′(c)
=
f(a)− f(b)

g(a)− g(b)
.

Consequence of Cauchy mean value theorem: L’Hpital’s rule.

Theorem 1.6. (Taylor’s theorem) If f is k-th times differentiable on [a, b], then there exists

c ∈ (a, b) such that

f(b) =

k−1∑
n=0

fn(a)

n!
(b− a)n +

fn(c)

k!
(b− a)k.

2 The Riemann Integral

We here follow the approach of Professor’s Leung instead of that in the book.

Definition 2.1. Given a bounded function f defined on [a, b]. We say that f is integrable

if

inf{U(f,P) : P is partition on [a, b]} = sup{L(f,P) : P : P is partition on [a, b]} = L

where U(f,P) is defined to be
∑

Mi∆xi, Mi = sup{f(x) : x ∈ [xi, xi+1]}. Similar for

L(f,P). And we say f ∈ R[a, b] and
∫ b

a
f = L
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Proposition 2.1. The followings are equivalent.

1. f ∈ R[a, b].

2. For any ε > 0, there exists partition P such that

U(f,P)− L(f,P) < ε.

3. For any ε > 0, there exists δ > 0 such that whenever P is a partition with ||P|| < δ,

then

U(f,P)− L(f,P) < ε.

4. There exists a unique A ∈ R such that for all P,

L(f,P) ≤ A ≤ U(f,P).

Remark: Noted that we will only concern bounded functions in the case of Riemann

integrability.

Example 2.2. Step functions, continuous functions, monotonic functions are integrable.

Proposition 2.2. R[a, b] is a vector space over R. That is to say addition, scalar multipli-

cation are all valid.

Once we know that f ∈ R[a, b], we can find
∫ b

a
f by any mean of approximation. Namely,

nk∑
i=1

f(tkj )∆xi →
∫ b

a

f

whenever Pk : a = x0 < x1 < ... < xnk
= b and tki ∈ [xi, xi+1] with ||Pk|| → 0.

2.1 Evaluation of integrals

Theorem 2.3. (First form of fundamental theorem of Calculus) Suppose there is a finite

set E on [a, b], F : [a, b] → R such that F is continuous, F ′ = f for all x ∈ [a, b] \ E and

f ∈ R[a, b]. Then ∫ b

a

f = F (b)− F (a).

Corollary 2.4. (Integration by parts) Let F,G be differentaible on [a, b]. If F ′and G′ are

integrable, then

∫ b

a

F ′(x)G(x) dx = F (x)G(x)
∣∣∣b
a
−
∫ b

a

F (x)G′(x) dx.
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2.2 Improper Integral

Definition 2.5. Let f : (a, b] → R be a real-valued function such that f ∈ R[c, b] for all

c > a. We say that the improper integral
∫ b

a
f exists if there exists L ∈ R such that

lim
c→a

∫ b

c

f = L.

Recall what we learnt from Math 2050. We have the following Cauchy type criterion.

Proposition 2.3. The limit exists if and only if for all ε > 0, there exists δ > 0 such that

for all x, y ∈ (0, δ), one have

|
∫ x

y

f | < ε.

Similar for the case when f is defined on a unbounded domain (see tutorial question list).

3 Sequence of functions

Definition 3.1. Given a sequence of function fn, f : A → R. We say that fn converge

to f pointwise if for each x, fn(x) → f(x) as a sequence of real numbers. We say that fn

converge uniformly to f if

∀ε > 0, ∃N ∈ N,∀ x ∈ A, |fn(x)− f(x)| < ε ∀n > N.

Proposition 3.1. (cauchy criterion) fn converges to f uniformly on A if and only if

∀ε > 0,∃N ∈ N,∀x ∈ A, |fn(x)− fm(x)| < ε ∀m,n > N.

This statement is a bit stronger than that in the book. See Rudin’s Principle of Mathematical

Analysis for more details.

So, to show that the convergence is not uniform. It is equivalent to show the followings.

∃ε0 > 0, xk ∈ A, |fnk
(xk)− fmk

(xk)| ≥ ε0 > 0.

3.1 Interchange of limiting process

Proposition 3.2. Uniform convergence preserves continuity, integrability. More precisely,

if fn ∈ C0[a, b] (R[a, b]) and fn converges uniformly to f on [a, b], then f ∈ C0[a, b] (R[a, b]).

Preservation of differentiability is a bit more restrictive. But we have

Proposition 3.3. Suppose fn : [a, b] → R is a sequence of functions. If there exists x0 ∈
[a, b] such that fn(x0) → l ∈ R and f ′n converges uniformly to a function g on [a, b]. Then

fn converges to some function f : [a, b]→ R with f ′ = g.

The followings theorem is aimed to remove the assumption of uniform convergence in the

integration theory.
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Theorem 3.2. (Bounded Convergence Theorem) Suppose fn ∈ R[a, b] and fn → f ∈ R[a, b].

If fn is uniformly bounded on [a, b], then

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Theorem 3.3. (Dini’s theorem) Suppose fn is a monotonic sequence of continuous func-

tions on [a, b]. If fn → f ∈ C0[a, b], then the convergence is uniform.

4 Series of real numbers

We say that
∑∞

k=1 xk is convergent if it is convergent as a partial sum.

Proposition 4.1. (Divergence test) If
∑∞

k=1 xk is convergent, then xn → 0.

Similarly, we have cauchy criterion.

Proposition 4.2. (Cauchy criterion) The series converges if and only if for all ε > 0, there

exists N ∈ N such that for all m,n > N ,∣∣∣∣∣
n∑

k=m

xk

∣∣∣∣∣ < ε.

To show the convergence, we mainly use the following test.

Proposition 4.3. (comparsion test) Suppose an and bn are sequcen of real numbers with

0 ≤ an ≤ bn. If
∑
bn converges, then

∑
an converges.

Theorem 4.1. (monotone convergence theorem) If an ≥ 0, then the series converges if and

only if its partial sum is bounded above.

Proposition 4.4. (Root test) Denote L = lim sup |an|1/n. Then if L < 1, the series is

convergent absolutely. If L > 1, the series diverges.

Proposition 4.5. (Ratio test) Denote L = lim sup |an+1

an
|. Then if L < 1, the series is

convergent absolutely.

Noted that in general, we have

lim inf |an+1

an
| ≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup |an+1

an
|.

Therefore, root test will obtain more informations than ratio test.

Proposition 4.6. (Integral test) Let f : [1,∞)→ R be a continuous function which is non-

negative and decreasing. Then the series
∑
f(n) exists if and only if the improper integral∫∞

1
f exists.

Example 4.2. The harmonic series
∑∞

n=1
1
np exists if p > 1.
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